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Abstract. The probability of finding a largesr defecr clusfer of size n in a percolation network 
is calculated analytically using a new distribution function scaling equation. From this 
result and the stress (voltage) enhancement at the tip of the most critical defect in the 
network, the probability of failure in percolation models of breakdown is calculated. For 
defect fractions less than the percolation point, this distribution is found to be of the form 
exponential of an exponential. Numerical simulations on the two-dimensional random 
fuse network confirm the new distribution function and convincingly distinguish between 
it and the Weibull form most often used in the fitting of breakdown data. 

Defects are well known to be of dominating importance in determining both the 
electrical and mechanical strength of materials (see, e.g., Gordon 1976, Ewalds and 
Wanhill 1984). There has consequently been an enormous amount of effort put into 
the study of defect formation and growth, and into the study of their effect on the 
strength of materials. Usually these studies involve one or a few defects in an otherwise 
perfect lattice, as the problem of a random distribution of defects is very difficult. 
Recently the latter problem has been addressed using percolation models of breakdown 
(Takayasu 1985, de Arcangelis er a1 1985, Sahimi and Goddard 1986, Duxbury er a1 
1986a, b). In addition to a direct simulation of the breakdown problem on percolation 
networks, it is possible to make an analytic study near the percolation point using 
standard scaling arguments (Duxbury et a1 1986a, b) and near the pure limit by 
considering the most critical defects in the network (Duxbury et a1 1986a, b). In this 
letter, we show by using a new distribution function scaling equation that it is possible 
to find not only the average strength of the networks, but also the distribution of 
breakdown strengths occurring in this class of model. The essential features of the 
analytic calculations include the cluster size and shape distributions occurring in 
percolation theory, the stress (voltage) enhancement occurring near the tip of the most 
critical defects and a new sort of scaling theory based on the stability hypothesis of 
the statistics of extremes. 

As well as its intrinsic interest, the problem of finding the distribution function of 
breakdown strengths occurring in percolation models is important for the following 
practical reason. In many engineering situations, the breakdown distribution is assumed 
to be of the form introduced by Weibull (1951): 
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where F ( a )  is the probability of mechanical failure in a material upon application of 
an external stress (T in a material of size Ld. Here c, u0 and m are constants that are 
used as parameters in fitting the experimental data. Because of its extensive use, it is 
of interest to determine whether it is appropriate to the percolation models that are 
now being introduced into the study of breakdown phenomena, and if not, whether 
the correct distribution is noticeably different from it. 

Of course, one must take care in comparing the predictions of simple model systems 
with real engineering breakdown situations. For example, defect mobility, plasticity 
and grain boundaries are all important in the fracture of real materials and are not 
included at a microscopic level in this model. However, the predictions of our 
calculations are qualiratiuely different than currently used failure distribution functions 
and we expect this qualitative difference to persist in certain real situations. 

In breakdown situations, it is the largest defect that often dominates in determining 
the strength of the material (see, e.g., Ewalds and Wanhill 1984). In a percolation 
model, one is then led to ask for the size of the largesr defect for a given value of p ,  
where a defect is a cluster of missing bonds. Define C ( n )  as the probability that no 
defect of size greater than n (i.e. a defect cluster containing no more than n missing 
bonds) exists in a network of size Lf .  Now consider combining N of these hypercubes 
together to form a hypercube of size Ld, where N = (L/ L,)d. Now in the thermodynamic 
limit, we expect the distribution function C ( n )  to have the same form on the Ld and 
Lf lattices and we also expect the C( n) distribution functions on the Lf lattices to be 
essentially independent. The combination of these two statements gives the distribution 
function scaling equation: 

where aN and bN are scaling variables that go to a finite value in the thermodynamic 
limit. Equation (2)  ensures that the distribution functions on the Ld and Lp lattices 
have the same form. This equation is the same as the stability hypothesis of the statistics 
of extremes (Gumbel 1958) and there are several forms of solution to it. The solution 
relevant to a particular model is dependent on the distribution of defects occurring in 
the model. In particular, if the distribution of defects is exponential, as is the case for 
the percolation problem for p > p c  (Kunz and Souillard 1977), then the probability 
that no defect of size greater than n exists is given in the large L limit by 

C(n)-exp[-cLd exp(- k n ) ]  (3)  

where c and k are arbitrary constants. In the case of an algebraic distribution of 
defects, as occurs at the percolation point, the probability that no defect of size greater 
than n exists in the Ld network is given by 

C(n)-exp(-cLdn-“) (4) 

where c and m are constants. For the calculation of the breakdown strength of a 
percolation network, one is interested in the probability of a defect of a particular 
shape and orientation occurring. It can be shown (Duxbury et a1 1986b) that this does 
not affect the form of the defect distribution (3)  and hence that it is correct in the 
breakdown networks, where C ( n )  is now the probability that no defect of the most 
critical shape and orientation, of size greater than n, occurs in the Ld network. The 
case of breakdown in a system with an algebraic distribution of defects is more subtle 
and we defer discussion of the detailed behaviour of the breakdown distribution 
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function in this case for later work. We now concentrate on the calculation of the 
probability of failure in percolation models of breakdown when the defect distribution 
is exponential (p away from p,) and hence where the form (3) is correct for the 
distribution of most critical defects. 

The defect of most critical shape and orientation is the defect that has the most 
stress enhancement at its edges. In the random fuse network (de Arcangelis er a1 1985) 
and in models of brittle fracture (Sahimi and Goddard 1986), it is a linear defect in 
two dimensions and a penny-shaped defect in three dimensions (Duxbury et a1 
1986a, b). In models of dielectric breakdown (Takayasu 1985, Duxbury er a1 1986a), 
it is a linear defect in all dimensions. For an isolated most critical defect of size n, it 
may be argued that the stress enhancement at its edge is given by 

for a rigid model of brittle fracture 
itip- n l / 2 ( d - ' )  

for elastic models of fracture 

for the random fuse network and 

for the dielectric network (Duxbury er a1 1986b). From equations (3) and (5)-(8) it 
is possible to find the failure distribution function for the percolation models of 
breakdown in many physical situations as is done below in the case of the random 
fuse network (a fuller exposition of this work is provided in Duxbury er a1 (1986b)). 
Here we concentrate on the result for the two-dimensional fuse network case, as the 
numerical simulations that we have done for that model allow a detailed comparison 
of the predicted form with the Weibull distribution. The probability of failure upon 
application of an external voltage VI for an L x L square lattice fuse network is predicted 
to be (inverting (8) and substituting in (3)) 

F( VI/ L )  = 1 - exp[ - cLd exp( - kL/ VI)] (9) 

where c and k are arbitrary constants. We also wish to compare with the Weibull 
form, and for the fuse network this is 

F( v,/ L) = 1 - exp[-  CL^ ( v,/ L)"] 

where c and m are arbitrary constants. We have performed detailed numerical simula- 
tions for the two-dimensional random fuse network (for details of the numerical 
procedure see Duxbury er a1 (1986a, b), where VI is the breakdown voltage as defined 
there) and have constructed the distribution function F( VJL) as shown in figure 1. 
The distribution in this figure is constructed from 1500 configurations on a 50 x 50 
square lattice at p = 0.90. A direct fitting to either of the forms (9) and (10) provides 
an excellent fit to the numerical data, to the accuracy of the figure. However, this does 
not mean that the differences between the two forms are insignificant. The region of 
engineering interest is at the very high reliability tail of the distribution (small Vl/L 
in figure 1) and it is thus important to do a more detailed comparison of the data in 
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Figure 1. The probability of failure F( V , / L )  constructed from 1500 realisations of the 
random fuse network at p = 0.90 on a 50 x 50 square lattice. 

this region of the distribution function. To do this, take two logarithms of equations 
(9) and (10) and define 

A=ln{-[ln(l - F (  V , / L ) ) ] / L d } .  (11) 

For the new form predicted here, a plot of A against L/ V ,  should be linear. In contrast, 
for the Weibull form, a plot of A against In( L/ V,) should be linear. The data are 
plotted in this manner in figures 2( a )  and ( b )  where it is seen that the new distribution 
function found here provides a better fit (figure 2 ( b ) ) .  The improvement in fit is 
especially noticeable for large A which is the high reliability (small V J L )  end of the 
distribution displayed in figure 1. 

As the percentage of defect present in real materials is not usually precisely at the 
percolation threshold, it appears that the form of distribution function found here 
should be used in fitting breakdown data rather than the Weibull form usually used. 
However, the models that lead to the exponential of an exponential form are very 
idealised and do not include many factors that may lead to a change in the form of 
the distribution function. Two such factors are the presence of domain boundaries 
and the possibility of ductility in the material. It is also apparent that the Weibull 
form may be recovered at the percolation threshold where a naive use of any of (6)-(8) 
in (4) leads to a Weibull form. 

In conclusion, we have developed a new scaling equation that enables the calculation 
of the distribution functions of extreme defect shapes in percolation models. The use 
of this scaling equation combined with the stress enhancement factors for the various 
percolation models of breakdown enables the calculation of the failure distribution in 
these systems. A comparison with numerical simulations on the two-dimensional 
random fuse network supports the new distribution function. 

We thank M Aizenmann, S Redner and J Wachtman for useful discussions and P D 
Beale for assistance with the numerical calculations. PMD thanks the hospitality of 
the Physics Department at Rutgers University where most of this work was done. 
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Figure 2. The data of figure 1 analysed to distinguish between the Weibull distribution 
(equation (10)) and the exponential of an exponential distribution (equation (9)). A is 
defined in equation (11) of the text and the full dots are the numerical data while the full 
line is an aid to the eye. ( a )  A against ln(L/V,). This should be a straight line if the 
Weibull distribution is correct. (b) A against L/ V, . This should be a straight line if the 
exponential of an exponential distribution is correct. 
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